In the real number system, the equation $\sqrt{x+3-4 \sqrt{x-1}}+\sqrt{x+8-6 \sqrt{x-1}}=1$ has
no solution
exactly two distinct solutions
exactly four distinct solutions
infinitely many solutions
Solution of the equation $\sqrt {x + 3 - 4\sqrt {x - 1} } + \sqrt {x + 8 - 6\sqrt {x - 1} } = 1$ is
The number of real solution of equation $(\frac{3}{2})^x = -x^2 + 5x-10$ :-
The sum of the solutions of the equation $\left| {\sqrt x - 2} \right| + \sqrt x \left( {\sqrt x - 4} \right) + 2 = 0\left( {x > 0} \right)$ is equal to
Let $f(x)=a x^2+b x+c$, where $a, b, c$ are integers, Suppose $f(1)=0,40 < f(6) < 50,60 < f(7) < 70$ and $1000 t < f(50) < 1000(t+1)$ for some integer $t$. Then, the value of $t$ is
The smallest value of ${x^2} - 3x + 3$ in the interval $( - 3,\,3/2)$ is